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1 Material: Dedmas Elite Black 40

Figure 1: Pictures of the tested material: Dedmas Elite Black 40. On the left hand side: the two sheets received.
On the right hand side: two of the sample beams extracted from the sheets (with lengths bigger than the 70-mm
long cantilevers that will be tested). The sheets have been provided as a layer of material (in black), and include
an adhesive layer with a translucide protective film.

The mass density of the material has been measured to 1 677 ± 8 kg.m−3.
The thickness of the material has been measured to 2.4 ± 0.1 mm.

The method used to characterise the [visco-]elastic parameters of the
material is described in appendix C).

Four beams, from which cantilevers of 70 mm in length have been
obtained, were extracted from the sheets (two beams per sheet). The
material has been tested without support metal beams, with or without
removing the translucide protective film1. 1 Thus we have checked that the protec-

tive film has no noticeable impact on the
beam behaviour.



Page 4 – Report R202286 - Elastic characterization of a material

The figure 2 shows an example of the Frequency Response Function
(FRF), defined as the ratio of the velocities between the free tip of the
cantilever beam and its other tip excited with a controlled transverse
displacement2. From the observation of the curve, the three first bending 2 Two points with low signal to noise

ratios, around 150 and 250 Hz, are dis-
regarded during the characterization
process. The origins of these low signal
to noise ratios are not clearly identified.
They can occur from an unrelated vibra-
tion during the measurements or a minor
defect in the beam for example.

modes are clearly identified.
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Figure 2: Example of a
Frequency Response
Function (FRF), defined
as the ratio of the
velocities between the
free tip of the cantilever
beam and its driven tip,
for one beam of length
70 mm.

The FRF values below 0 indicate that the free tip of the beam has
a velocity (and a displacement) smaller than its excited tip. This is
commonly observed and predicted for highly damping materials.

Using the expressions reported in ISO 6721-33 or ASTM E7564, the 3 ISO 6721-3. Plastics - determination
of dynamic mechanical properties of
plastics - flexural vibrations - resonance-
curve method. International Standard
Organisation, 1996.

4 ASTM E756-98. Standard test method
for measuring vibration-damping prop-
erties of materials. American Society for
Testing and Materials, 1998.

elastic parameters are estimated at the frequencies corresponding to all
identified modes (see table 1 and figure 3).

Frequency E (σX ) η (σX )
[Hz] × 106 N.m−2 -

48 627 (53) 0.49 (0.02)

432 1 311 (48) 0.44 (0.02)

1 216 1 479 (39) 0.40 (0.01)

Conditions:
Temperature: 21.0 ◦C
Ambient Pressure: 99 700 Pa
Relative humidity : 62%

Table 1: Material: Dedmas Elite Black 40: Mean values of the Young’s
modulus (E) and corresponding loss factor (η) of the tested material
samples assumed to be homogeneous. σX represents the standard
deviation over the four tested samples.

From the results reported in table 1 and equation (5) in ASTM E756,
the computed loss factor of a composite beam made of the characterised
damping material glued to a 1 mm-thick steel beam is 0.15 at 200 Hz.
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Figure 3: Graphical representation of the elastic characterisation results reported in table 1.
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Figure 4: Scheme
of the frequency
and temperature
superposition
principle, which
derives from the
Time-
Temperature
Superposition
(TTS), for a
visco-elastic
material
exhibiting two
transitions (the
glassy one and a
secondary one).
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From a comparison of figures 3 and 4, it can be observed that the
material behaves as a visco-elastic material after the glass transition (at
least in the studied frequency range and at the studied temperature of
21.0 Celsius degrees).

Finally, the Poisson’s ratio(s) cannot be estimated from the technique
used. However, from the polymer structure of the material, values
around 0.40 are expected.
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Description of the
characterization methods

The following pages present the method used in this report.
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A Measure of the sample thickness
Thickness
considered

Figure 5: Material sample with a
non planar surface.

The thickness of the samples are measured manually using an electronic
caliper with an accuracy of 0.01 mm.

For sample having an irregular surface, the kept accuracy is 0.1 mm .
For materials having a thickness larger than 10 mm and for which

the surface is not flat, the thickness may be rounded to the nearest
millimeter.

B Measure of the mass density

To determine the mass density of a given sample, the weight is measured
using the precision balance shown below. The thickness of the specimen
are measured as described in Section A and the diameter of the specimen
is given by the diameter of the die cutting tool given with a uncertainty
of 0.01 mm.

Figure 6: Precision balance used to measure the weight of the specimens.
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C Estimating the elastic and damping properties - Oberst’s beam method

This method is based on the Oberst beam test as described in the
standards ASTM E756 5 and ISO 6721-3 6 (see Fig. 7). 5 ASTM E756-98. Standard test method

for measuring vibration-damping prop-
erties of materials. American Society for
Testing and Materials, 1998.

6 ISO 6721-3. Plastics - determination
of dynamic mechanical properties of
plastics - flexural vibrations - resonance-
curve method. International Standard
Organisation, 1996.
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Figure 7: “Cantilever” beam used for the standard Oberst beam test.

The analysis of the results are based on the measurements of the
Frequency Response Functions (FRF). These FRF are defined as the ratio
of the normal velocity prescribed at one end of the beam to the normal
velocity measured at an arbitrary position on the beam, usually at its
second end. The prescribed velocity is measured using an accelerometer
placed on the dynamic shaker responsible for the excitation of the whole
beam. The second velocity position is measured using a laser vibrometer
to avoid any additional mass effect (see Fig. 8)..

Prescribed
displacement

Measured
displacement

Clamped BC

Free BC

Figure 8: Example of the mounting of an Oberst beam and measurement
using a laser vibrometer.

The Young’s modulus and the damping loss factor, in the direction of
the beam, are determined respectively from the position of the resonance
frequency and from the width of the resonance peak at -n dB (n being at
least equal to 3).

This method does not allow the determination of the Poisson ratio of
the material.
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