

Technical Report 23751-SRL-RP-XT-004-PI

Project

The Laboratory Measurement of Airborne Sound Insulation of Various Barrier Materials

Prepared for

WSBL Ltd

By

Allen Smalls

Published

7 August 2020

Template Ref: Lab Edition 3 - 14/10/2019

Page: 2 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Quality Assurance										
Project Title	The Laboratory Measurement of Airborne Sound Insulation of Various Barrier Materials									
Document Title	Technical Report									
Client	WSBL Ltd									
Client Address	Durbar Mill, Hereford Road, Blackburn, Lancashire, BB1 3JU									
Author	Allen Smalls									
Checker	George Thomson									
Report Number	23751-SRL-RP-XT-004-P1									

Report Version History

Version	Date	Comments
PI	07/08/2020	

Page 3 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Summary

Tests have been done in SRL's Laboratory at Holbrook House, Sudbury, Suffolk, to determine the sound reduction index of various barrier materials in accordance with BS EN ISO 10140-2:2010.

From these measurements, the required results have been derived and are presented in both tabular and graphic form in Data Sheets 1 to 4.

The results are given in 1/3rd octave bands over the frequency range 50Hz to 10kHz, which is beyond that required by the test standard. Measurements outside the standard frequency range are not UKAS accredited.

Allen Smalls Quality Manager For and on behalf of SRL Technical Services Limited Tel: 01787 247595 Email: asmalls@srltsl.com

George Thomson Approved Signatory

Page 4 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Contents

Summa	ary	3
1.0	Details of Measurements	5
2.0	Description of Test	7
3.0	Results	8
Datash	eets I-4	9
Drawin	ngs I	3
Appen	dix A – Test ProcedureI	5
Appen	dix B – Measurement UncertaintyI	7

Test Report No: 23751-SRL-RP-XT-004-PI

Page 5 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

1.0 Details of Measurements

1.1 Location

Sound Research Laboratories

Holbrook House

Little Waldingfield

Sudbury

Suffolk

COI0 0TF

1.2 Test Dates

22 August 2017

1.3 Tester

Richard Calvert of SRL Technical Services Limited

1.4 Instrumentation and Apparatus Used

Make	Description	Туре
EDI	Microphone Multiplexer	
	Microphone Power Supply Unit	
Norwegian Electronics	Real Time Analyser	830
	Rotating Microphone Boom	231

Test Report No: 23751-SRL-RP-XT-004-PI

Page 6 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Brüel & Kjaer	Windshields	UA0237
	Pre Amplifiers	2669C
	Microphone Calibrator	4231
	Omnipower Sound Source	4296
Larson Davis	12mm Condenser Microphone	2560
SRL	Loudspeakers	100w
Oregon Scientific	Temperature & Humidity & Probe	THGR810
ΤΟΑ	Graphic Equalizer	E-1231
QSC Audio	Power Amplifier	RMX 1450

1.5 References

BS EN ISO 717-1:2013	Rating of sound insulation in buildings and of building elements. Airborne Sound Insulation.
BS EN ISO 10140-2:2010	Laboratory measurement of sound insulation for building elements – Part 2: Measurement of airborne sound insulation.

Test Report No: 23751-SRL-RP-XT-004-PI

Page 7 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

2.0 Description of Test

2.1 Description of Sample

Various barrier materials were tested. See Data Sheets 1 to 4 and Drawings for details of construction tested.

Selected at random
New
WSBL Ltd
WSBL Ltd

Sample installed by: SRL Technical Services Ltd

2.2 Sample Delivery date

21 August 2017

2.3 Test Procedures

The sample was mounted/located and tested in accordance with the relevant standard. The method and procedure is described in Appendix A. The measurement uncertainty is given in Appendix B.

Page 8 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

3.0 Results

The results of the measurements and subsequent analysis are given in Data Sheet I to 4 and summarised below.

Results relate only to the items received and tested.

SRL Test No.	Description in Brief	R _w (C;C _{tr})
3	18 SWG Steel Plate, 25kg/m³ 25mm Glass Quilt, Revac® Momentum 100 FF SGQ Thermoplastic Heavy Layer Foiled	38 (-3;-9)
5	18 SWG Steel Plate, 12kg/m³ 25mm, Revac [®] Momentum 100 FF Neptune [®] 3045 H Thermoplastic Heavy Layer Foiled	39 (-2;-8)
7	18 SWG Steel Plate, 25kg/m³ 25mm Glass Quilt, Revac [®] Momentum 50 FF SGQ Thermoplastic Heavy Layer Foiled	36 (-3;-8)
8	18 SWG Steel Plate, 12kg/m ³ 25mm, Revac [®] Momentum 50 FF Neptune [®] 3045 H Thermoplastic Heavy Layer Foiled	36 (-3;-8)

Test Report No: 23751-SRL-RP-XT-004-PI

Page 9 of 18

Date: 07/08/2020

			Data S	Sheet I						
Test Number: Client: Test Date: Sample Height: Sample Width:	3 WSBL Ltc 22/08/20 2.2 m 2 m	17		Air ⁻	: Roor Temp Humi Ime:	:: 9 	ource 9.1 °C 73 % 15 m³	Receiving 19.2 °C 73 % 300 m ³	_	
Sample Weight:	20.53 kg/	m²					Air P	ressure	e: 1013 mbar	ſ
Product Identification:			25kg/m3 2 Heavy Laye		ass Qi	iilt, Reva	ic® Mon	nentum	100 FF	
			70.0 —					гт		I
Freg, f	l Reduction dex, dB		-							
1/3 00	ct Octave		60.0							
50+ 20.5										
63+ 20.7	17.8		1							
80+ 14.9			F0 0							
100 17.9			50.0							
125 18.4 160 16.7							′			
200 18.2		Sound Reduction Index, dB								
250 25.7		lex,	40.0					1-		
315 33.4		lnc				1				
400 40.4		tion	-							
500 45.2	43.6	quct			1					
630 50.0)	Rei	30.0 +	$\left \right $	/ //			$\left \right $		
800 52.8		pur		/						
1000 54.8		Sot	-							
1250 55.9 1600 56.9				/	/					
1600 56.9 2000 58.5			20.0		++					
2500 60.0			Γ	$ \Upsilon $						
3150 61.8			1				-		und Reduction	
4000 62.7			10.0					Ind	ex	
5000 64.3			10.0				- []	– – Rw	reference	
6300+ 67.8								cur	ve	
8000+ 62.9										
10000+ 56.6			0.0							
Average 41.7	v3.0		100	125 160 200	- 250 - 250	requence	000 800 1000 1000 1000	1000 1250	2000 2500 3150 4000	nnnc
Rating according to	BS EN ISO 717	7-1.2013	* shows me	asurem		•		round		
	55 ET 150 / 17	1.2013	> shows m					-		
$R_w(C;C_{tr})= 38(-1)$	3;-9)dB								AS accredited	

Test Report No: 23751-SRL-RP-XT-004-PI

Page 10 of 18

Date: 07/08/2020

				<u>Data</u>	<u>Sheet 2</u>					
Test Number: Client: Test Date: Sample Height:		5 WSBL Ltc 22/08/20 2.2 m 2 m			Air Air	t Roor Temp Humic ume:	erature		ource 9.2 °C 72 % 15 m³	Receiving 19.3 °C 75 % 300 m ³
Sample W Sample W		20.2 kg/m	1 ²					Air P	ressure:	1013 mbar
Product Identificat	ion:			, 12kg/m3 2 tic Heavy L			Momentu	m 100	FF Neptur	ne®
		5015111	inci inopias	80.0 -						
		du arta a								
Freq, f Hz	Sound Re Index,			-						
	⅓ Oct	Octave		70.0 +						
50+	21.6									
63+	20.5	17.6		1						
80+	14.5									
100	17.8			60.0						
125	17.3	17.9								
160	18.8		dB	1					1	
200	21.7	25.4	ex,	50.0						
250 315	28.2 35.1	25.4	Ind	50.0						
400	41.1		u							
500	45.3	44.1	Sound Reduction Index, dB							+ -
630	49.6		Redi	40.0 -						
800	53.2		P P	40.0			1-1			
1000	55.4	54.8	uno	_			//			
1250	56.5	-	S			./				
1600	58.I			30.0 -		-1/				
2000	59.7	59.6								
2500	61.6			_	1/1					
3150	63.I				, ł)	/			Soun Index	d Reduction
4000	64.1	64.2		20.0 +	$+ \mid A$			+		H
5000	66.0 *			\vdash				-	Rw r	eference
6300+	69.2 *			-						$\frac{1}{1}$
8000+ 10000+	63.0 *	60.1								
	56.4 *	Version		10.0 🕂				-	+ + +	
Average 100-3150	42.7	version v3.0		100	125 160 200	500 Fi Fi	등	000 89 7, Hz	10 00 12 50 16 00	2000 2500 3150 4000
Rating acco	rding to BS E	N ISO 717	7-1:2013	* shows m	easurem				ground	
acco		11150 / 17	1.2013	> shows n					-	
	39 (-2 ; -			+ shows F			,	-		

Test Report No: 23751-SRL-RP-XT-004-PI

Page || of |8

Date: 07/08/2020

				Da	ta She	<u>et 3</u>										
Test Number:7Client:WSBL LtdTest Date:22/08/2017Sample Height:2.2 mSample Width:2 mSample Weight:15.53 kg/m²		WSBL Ltc 22/08/20 2.2 m		Test Room: Air Temperature: Air Humidity: Volume:							Source : 19.3 °C 72 % 115 m ³			Receivin 19.4 °C 76 % 300 m ³		С
								Air	^r Pre	ssur	e:	10	I 2 mb	Ja		
Product Identificati	on:		Steel Plate, rmoplastic	0			iss Q	uilt,	Reva	c® M	1ome	ntum	50 F	F		
				80.0												
	Sound Re	duction														
Freq, f Hz	Index,	dB														
	⅓ Oct	Octave		70.0	+		+			+						
50+	19.1															
63+	19.0	16.6			1											
80+	13.8															
100	17.1			60.0	+		+			+				\mathbf{X}		_
125	16.8	16.7														
160	16.2		В		$\left\{ \right\}$											
200	17.3		Sound Reduction Index, dB								$\boldsymbol{\Lambda}$					
250	22.0	20.5	dex	50.0			_	-				_		_		
315	28.3		L PC													
400	35.1		ion		-					Ι						
500	40.8	38.6	nct						/	′						
630	46.4		ßed	40.0												
800	50.8		р	40.0						-	- 1	-				
1000	53.6	52.8	uno						1	1						
1250	54.9		ñ					1								
1600	56.5							1/								
2000	58.0	57.9		30.0			.1	Τ								
2500	59.5						1/	1								_
3150	61.8				1	1						— So	und	Redu	ction	
4000	63.1	63.1			1		X					In	dex			
5000	64.9 *	05.1		20.0	1							- Rv	v refe	erenc	ē	F
6300+	67.9 *				1	\square							rve			
8000+	62.5 *	59.6			$\left\{ \right\}$											1
10000+	55.9 *	57.0														
	55.7	Version		10.0	+ $+$ $+$		_					_			$\left \right $	
Average	39.7	Version			100	160 200	250	315	100	630		250	000000000000000000000000000000000000000	00	150 00	
100-3150		v3.0					F	req	luenc	у, Н:	z 5	1	2 7	55	ξ Ψ	i
Rating accor	ding to BS E	N ISO 717	7-1:2013	* shows							<u> </u>					
				 > shows measurement limited by background + shows Frequency beyond standard and not UKAS accredited 												

Test Report No: 23751-SRL-RP-XT-004-PI

Page 12 of 18

Date: 07/08/2020

				Data	Shee	t 4								
Test Number: Client: Test Date: Sample Height: Sample Width: Sample Weight:		8 WSBL Ltd 22/08/20 2.2 m 2 m I 5.2 kg/m	17		A A	est R ir Te ir Hu olum	mper Imidi	atur		Sou 19.3 71 115 r Pre	°C % m³		teceiv 19.5 ° 77 % 300 n 012 m	C 1 ³
Product Identificati	ion:		Steel Plate, ne® 3045	-						.evac®	Mom	ientum	50	
				80.0 丁										
Freq, f Hz	Sound Rea Index,			-										
50+ 63+	¹ ⁄₃ Oct 20.1 19.3	Octave		70.0 -										
80+	<u>19.3</u> <u>12.7</u> <u>6.7</u>	10.0		60.0 -										
125 160	16.6 16.9	16.7	в	-										
200 250 315	17.1 21.3 28.4	20.2	Sound Reduction Index, dB	50.0 -		_			/	Ĥ				_
400 500 630	34.9 40.0 45.4	38.2	Reduction	40.0 -										
800 1000 1250	49.9 53.0 54.7	52.1	Sound F	-				-						
1600 2000 2500	56.3 58.4 60.0	58.0		30.0										_
3150 4000 5000	62.0 63.0 64.7 *	63.1		20.0			/				Ind	und Red ex refere		
6300+ 8000+ 10000+	67.4 * 61.8 * 55.5 *	59.1									cur	ve		
Average 100-3150	39.5	Version v3.0		10.0 + 01	125 + 160 +	200	+ 312 312 Fre		⊢ Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro	⊼ 800 + 1000 +	1250 +	2000 + 20000 + 200000 + 20000 + 20000 + 2000000 + 200000 + 200000 + 2000000 + 200000 + 200000000	3150 +	5000 L
Rating acco	rding to BS E	N ISO 717	7-1:2013	* shows 1 > shows			t corr	ected	for b	ackgro				
R _w (C;C _{tr})=	36 (-3 ; -8	3) d B		+ shows						-		AS acc	redited	

Page 13 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Drawings

TEST 3					
Layer A	18 SWG Steel Plate			9.9	kg/m2
Layer B	25kg/m3 25mm Glass	Quilt		0.625	kg/m2
Layer C	Revac® Momentum 100 FF SGQ Thermoplastic Heavy Layer Foiled 10			kg/m2	
			Total	20.525	kg/m2

TEST 5						
Layer A	18 SWG Steel Plate				9.9	kg/m2
Layer B	12kg/m3 25mm Neptune®3045 H				0.3	kg/m2
Layer C	Revac [®] Momentum 100 FF Neptune [®] 3045 H Thermoplastic Heavy Layer Foiled 10			kg/m2		
				Total	20.2	kg/m2

Page 14 of 18

Date: 07/08/2020

TEST 7				
Layer A	18 SWG Steel Plate		9.9	kg/m2
Layer B	25kg/m3 25mm Glass Quilt		0.625	kg/m2
Layer C	Revac [®] Momentum 50 FF SGQ Thermoplastic Heavy Layer Foiled 5			kg/m2
		Total	15.525	kg/m2

TEST 8						
Layer A	18 SWG Steel Plate				9.9	kg/m2
Layer B	12kg/m3 25mm Neptune® 3045 H				0.3	kg/m2
Layer C	Revac [®] Momentum 50 FF Neptune [®] 3045 H Thermoplastic Heavy Layer Foiled 5			kg/m2		
				Total	15.2	kg/m2

Test Report No: 23751-SRL-RP-XT-004-PI

Page 15 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix A – Test Procedure

Measurement of Sound Transmission in accordance with BS EN ISO 10140-2: 2010 – TP33

In the laboratory, airborne sound transmission is determined from the difference in sound pressure levels measured across a test sample installed between two reverberant rooms. The difference in measured sound pressure levels is corrected for the amount of absorption in the receiving room. The test is done under conditions which restrict the transmission of sound by paths other than directly through the sample. The source sound field is randomly incident on the sample.

The test sample is located and sealed in an aperture within the brick dividing wall between the two rectangular reverberant (i.e. acoustically "live") room, both of which are constructed from 215mm brick with reinforced concrete floors and roofs. The brick wall has dimensions of 8m wide x 3.1m high and 550mm nominal thickness and forms the whole of the common area between the two rooms.

One of the rooms is used as the receiving room and has a volume of 300 cubic metres. It is isolated from the surrounding structure and the adjoining room by the use of resilient mountings and seals ensuring good acoustic isolation. The adjoining source room has a volume of 115 cubic metres.

Broad band noise is produced in the source room from an electronic generator, power amplifier and loudspeaker. The resulting sound pressure levels in both rooms are sampled using a microphone mounted on an oscillating boom and connected to a real time analyser. The signal is filtered into one third octave band widths, integrated and averaged. The value obtained at each frequency is known as the average sound pressure level for either the source or the receiving room. The change in level across the test sample is termed the sound pressure level difference, i.e.

$$D = L_1 - L_2$$

where

- D is the equivalent Sound Pressure level difference, dB
- L_1 is the equivalent Sound Pressure level in the source room, dB
- $L_2 \quad \ \ is the equivalent \ Sound \ Pressure \ level \ in \ the \ receiving \ room, \ dB$

The Sound Reduction Index (R), also known by the American terminology Sound Transmission Loss, is defined as the number of decibels by which sound energy randomly incident on the test sample is reduced in transmitting through it and is given by the formula:

Page 16 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

$$R = D + 10log_{10} \frac{s}{A}$$
..... in decibels

where

- S is the area of the sample, m²
- A is the total absorption in the receiving room, m²

The Sound Reduction Index is an expression of the laboratory sound transmission performance of a particular element or construction. It is a function of the mass, thickness, sealing, method of mounting etc. and is independent of the overall area of the sample.

However, when an example of this construction is installed on site, the sound insulation obtained will depend upon its surface area, as well as the absorption in the receiving room. The larger the area the greater the sound energy transmitted. Also, the overall sound insulation is affected by the sound transmission through other building elements, some of which may have an inferior performance to the sample tested. In practice, therefore, the potential sound reduction index of a construction is not fully realised on site. Furthermore, the sound reduction index of a particular sample of that construction can only be measured accurately in a laboratory, because only under such controlled conditions can the sound transmission path be limited to the sample under test.

 R_w , C and C_{tr} have been calculated in accordance with the relevant section of BS EN ISO 717-1:2013 from the results of laboratory tests carried out in accordance with BS EN ISO 10140-2:2010.

Page 17 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix B – Measurement Uncertainty

BS EN ISO 10140-2: 2010 - TP33

The following values of uncertainty are based on a standard uncertainty multiplied by a coverage factor of k = 2, which provides a level of confidence of approximately 95%.

Frequency, Hz	Uncertainty, ± dB
100	3.2
125	2.9
160	2.5
200	2.5
250	1.8
315	1.8
400	1.5
500	1.5
630	1.2
800	1.2
1000	1.2
1250	1.2
1600	1.2
2000	1.2
2500	1.2
3150	1.0

Test Report No: 23751-SRL-RP-XT-004-PI

Page 18 of 18

Date: 07/08/2020

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Sudbury Consultancy

Holbrook House Little Waldingfield Sudbury Suffolk CO10 0TF Tel: +44 (0)1787 247595

Birmingham Consultancy

Cornwall Buildings 45 Newhall Street Birmingham B3 3QR Tel: +44 (0)121 270 6680

Manchester Consultancy

Suite 1.9, Canada House Chepstow Street Manchester MI 5FW Tel: +44 (0)161 929 5585

South Africa Consultancy

102 Heritage House

Tel: +27 (0)21 205 9201

20 Dreyer Street

Claremont

Cape Town

South Africa

7708

London Consultancy

07-106 8 Devonshire Square London EC2M 4PL Tel: +44 (0)207 251 3585

Laboratory

Holbrook House The Street Sudbury Suffolk CO10 0TF Tel: +44 (0)1787 247595

Website: www.srltsl.com e-mail: srl@srltsl.com

SRL offers services in:

Acoustics Air Quality BREEAM Laboratory and Site Testing

Registered Name and Address:

SRL Technical Services Limited Holbrook House Little Waldingfield Sudbury Suffolk CO10 0TF

Registered Number: 907694 England

